
Glassy states in fermionic systems with strong disorder and interactions

David J. Schwab and Sudip Chakravarty
Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547, USA

�Received 17 December 2008; published 4 March 2009�

We study the competition between interactions and disorder in two dimensions. Whereas a noninteracting
system is always Anderson localized by disorder in two dimensions, a pure system can develop a Mott gap for
sufficiently strong interactions. Within a simple model, with short-ranged repulsive interactions, we show that,
even in the limit of strong interaction, the Mott gap is completely washed out by disorder for an infinite system
for dimensions D�2, leading to a glassy state. Moreover, the Mott insulator cannot maintain a broken
symmetry in the presence of disorder. We then show that the probability of a nonzero gap as a function of
system size falls onto a universal curve, reflecting the glassy dynamics. An analytic calculation is also pre-
sented in one dimension that provides further insight into the nature of slow dynamics.
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I. INTRODUCTION

It has been a dream in condensed-matter physics to de-
scribe the quantum phase transition between localized and
itinerant electrons as it is a reflection of the basic concept of
wave-particle duality in a quantum many-body system. Itin-
erancy mirrors the wave aspect while localization mirrors the
particle aspect. In one-particle quantum mechanics, wave
and particle descriptions are dual of each other, and there is
no fundamental distinction between them. Coherent superpo-
sition of waves are packets that act like lumps of energy, or
particles. Yet, in a many particle system one believes that the
metallic state, described by a non-normalizable wave func-
tion, is separated by a quantum phase transition from nor-
malizable localized states, where particles are tied to spatial
centers.

Band theory proposes a sharp distinction between metals
and insulators. Although a typical eigenstate carries current,
the totality of electrons in a filled band cannot. Paradoxically,
in spite of the quantum mechanically coherent and extended
nature of each electronic eigenstate, the system is an insula-
tor. The many particle wave function of an insulator is a
Slater determinant of Bloch functions of a filled band. Alter-
nately, the same determinant can be rewritten as a determi-
nant of localized Wannier functions. This is a manifestation
of wave-particle duality.

An interaction driven insulator, or a Mott insulator, can be
an insulator even if the band is half filled and can be due to
local repulsive, at most a few body, interactions. While this
can lead to a collective localized state, this mechanism is
vastly different from the nonlocal statistical constraint en-
forced by the Pauli exclusion principle, as in a band insulator
of noninteracting electrons. Mott insulators are similar to
classical insulators. Without quantum mechanics, at zero
temperature, a system of electrons will assume the configu-
ration of the lowest potential energy due to interactions, and
because of the harmonic restoring force they will not conduct
in response to an applied electric field. The lowest energy
state is likely to be a broken-symmetry state with crystalline
order. A classical insulator is a localized state stabilized by
interactions.

There is another remarkable alternative: the Anderson
insulator.1 The noninteracting electronic eigenstates may

themselves localize due to a random potential, and if the
Fermi energy is situated within the localized states, the sys-
tem is an insulator. Like a band insulator, quantum interfer-
ence localizes a particle due to interference of time reversed
paths, another manifestation of wave-particle duality. A pri-
ori it is not clear when this physical situation realizes as the
role of interaction becomes more and more important as the
system approaches localization. Nonetheless, we would like
to show that in certain circumstances the opposite may be
true; that is, disorder dominates, however weak it may be.

One of the mechanisms by which an interacting system
without disorder may become insulating is by opening a gap
in the excitation spectra by breaking symmetries, such as
spin-density and charge-density waves that are particle-hole
condensates. This mechanism provides a definition of Mott
insulators, in the sense that a half-filled band could insulate.
Whether or not all Mott insulators must be accompanied by a
broken symmetry has been the subject of some recent
debate.2,3 Rather than addressing this issue, we shall assume
that there is a broken symmetry in the Mott state, which is
often the case, and in fact it is the reason for its existence.
We emphasize that broken symmetry is a general concept for
which correlation effects are sine qua non. Thus, the mecha-
nism itself must not be identified with a Hartree-Fock ap-
proximation.

The nature, and even the existence, of a two-dimensional
�2D� metal-insulator transition in low disorder Si-metal-
oxide-semiconductor field-effect transistors has remained
controversial since it was first reported,4 despite considerable
experimental and theoretical effort.5 The fundamental diffi-
culty is in understanding the complex interplay between
strong interactions and quenched disorder. Noninteracting
electrons �or even a Fermi liquid� are localized by any
amount of disorder in 2D,6 which implies that, if a metallic
phase is found in experiments, it must reflect a non-Fermi
liquid.7

Due to their complexity, a principled analysis of systems
involving both strong interactions and disorder is necessary
to understand what sort of qualitative behaviors may result
from these two basic ingredients. In this work, we will pro-
vide such an analysis, albeit in a simple model. The paper is
organized as follows. In Sec. II, we introduce the model and
show quite rigorously that this model does not have a true
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metal-insulator transition in the presence of disorder. The
analysis is performed in the strong-interaction limit where
the Mott gap is the largest and should be the most resistant to
the onslaught of disorder. In Sec. III, we study, through nu-
merically constructed ground states, the probability for a fi-
nite system to have a nonzero gap and show that this quantity
falls onto a universal curve. From this result, we then show
that the system possesses glassy quantum dynamics. In Sec.
IV, we then specialize to the case of one dimension and study
analytically the disorder-averaged ground-state density as a
function of chemical potential. We compare this to the den-
sity achieved from a rapid temperature quench to illustrate
anomalously slow dynamics even in one-dimensional �1D�.
Finally, we conclude in Sec. V with a brief discussion of the
implications of our results.

II. MODEL

Consider the simplest 2D fermion model that has a broken
symmetry in the insulating state: spinless fermions on a
square lattice with the Hamiltonian

Hp = −
1

2 �
�i,j�

�ci
†cj + H.c.� + ��

�i,j�
�ni −

1

2
	�nj −

1

2
	 . �1�

The sums are over nearest neighbors of a bipartite lattice
with sublattices A and B. The symmetry under the operation
ci→−ci

† in A, while ci→ci
† in B, ensures half filling, with

ni=ci
†ci being the density operator at site i. This model is

well studied8,9 in 1D where the system is a Mott localized
insulator in our sense, a charge-density wave state, with a
gap, g, for ��1; g→�, for ��1. For ��1, the system is
metallic; therefore �=1 is the location of a metal-insulator
transition. The same transition must obviously be present in
2D on general grounds as the fluctuations are weaker in
higher dimensions.

Addition of a random potential gives H=Hp+Hr with
Hr=−�iVini, where Vi are independent Gaussian random
variables with zero mean and variance �2. Consider the case
where we drop the hopping terms and we are left simply with
a classical model since the � term clearly commutes with Hr.
We do this not as an approximation but to prove the point
that, even in the limit that the Mott insulator has the best
chance of surviving, any amount of randomness destroys the
Mott gap. We are strongly motivated by an argument offered
for 1D.10 As � is lowered, the kinetic energy will cause the
walls to fluctuate but this will not change the fact that the
gap has been destroyed by randomness nor will it restore the
symmetry. As long as the disorder remains finite, it is diffi-
cult to believe that the system will ever reach a true metallic
state.

Using ni=Sz�i�+1 /2, we see that we have, in fact, an
Ising model. Redefining Sz�i�→−Sz�i� at every other site,
and remembering that the Vi are symmetrically distributed
with zero mean, gives simply the classical ferromagnetic
random-field Ising model �RFIM�:

H = − ��
�i,j�

Sz�i�Sz�j� − �
i

ViSz�i� . �2�

Although 2D is the marginal dimension for the Imry-Ma11

argument, it has been rigorously shown by Aizenmann and
Wehr12 that there is no long-range order for arbitrarily weak
randomness. Moreover, since the ground state will generi-
cally be a disordered spin configuration dependent upon the
particular realization of the random potential, the excitations
of the system result from moving domain walls between the
up-spin and down-spin regions. As a result of the disorder,
the domain walls will in general be rough, and the elemen-
tary excitations then consist of moving corners because no
extra bonds are broken �see Fig. 1�. The energy cost of mov-
ing corners depends only on the random-field configuration
and not on �. Thus, for an infinite system, the excitation
spectrum will be essentially gapless for a continuous distri-
bution of Vi, which we have assumed. Note that the corner
excitations are not necessarily the first-excited states but they
are sufficient to prove the existence of gapless excitations.

III. TWO-DIMENSIONAL GROUND STATES AND GLASSY
DYNAMICS

Having argued against the existence of a metal-insulator
transition in the presence of disorder, we turn to an analysis
of the ground state in 2D and provide evidence for glassy
quantum dynamics. As already mentioned, D=2 is special
for the RFIM. In 1D, the Imry-Ma argument easily gives that
ordered domains have size Lc
� �

� �2. But since D=2 is the
marginal dimension, no information can be gleaned from the
simple Imry-Ma argument. Rather, it is necessary to study
the energy gained upon allowing the domain walls to
roughen. Such a calculation was performed by Binder13 with
the result13,14 that Lc
exp�A� �

� �2�, where A is a constant.
Thus, domains in two dimensions are exponentially larger
than those in 1D. It is important to note that this equation
relates the typical size of domains to the ratio of exchange to
random-field energies.

This leads us to ask the following question: Given a finite
system of size L	L, what is the probability that it possesses
an energy gap? For small L
Lc, a nonzero gap would be

FIG. 1. Example of a domain wall separating a region of down
spins �above� from up spins �below�. The dotted line is an example
of a �gapless� corner excitation in which no extra bonds are broken.
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fairly likely, but as L increases toward the crossover length,
Lc, given above, the probability of finding a gap should de-
crease because the system may now contain multiple ordered
domains separated by rough walls.

A. Numerically computed ground states

We answer this question numerically by computing exact
ground-state configurations of the RFIM for different system
sizes and disorder strengths. The general method15,16 for
finding ground states of random-field systems �or even ran-
dom bond systems without frustration� is based on a map-
ping to an equivalent minimum cut network flow problem. In
a network, nodes �i.e., lattice sites� are connected by directed
links with finite capacity, signifying the maximum possible
flow between neighboring nodes. Two additional sites
�dubbed the source and sink� are augmented to the lattice,
and each site of the RFIM is connected by a directed link to
one of the two external sites, depending on the sign and
strength of its random field. The flow capacity between
neighboring lattice sites is determined by the exchange en-
ergy. Dividing the network in two, with source and sink on
opposite sides of the division, defines a cut. With this con-
struction, the minimum of the capacity across all possible
cuts provides the ground-state energy of the RFIM while the
minimum cut itself determines the spin configuration. Using
the equivalence between the minimum cut capacity and the
maximum flow through the network, known as the max
flow-min cut theorem,17 allows one to simply calculate maxi-
mum flows. To do this, we employed the efficient PUSH-

RELABEL code18 which enables us to get good statistics for
moderate system sizes. To illustrate typical ground-state do-
main structures for various disorder strengths, we computed
minimum cuts explicitly through the Edmonds-Karp
algorithm,19 which is displayed in Fig. 2.

For each chosen value of � /� and ln L, we calculate the
fraction of realizations of the Vi that contain a domain wall in
their ground state. To detect a domain wall, the exact ground-
state energy computed via the network flow model is com-
pared with the minimum energy of the two ferromagnetic
states �all up or all down�. If the ground-state energy is
lower, there must be a domain wall. If not, and the ground-
state energy equals the lower energy ferromagnetic state,
then there must not be a domain wall. This procedure avoids
having to examine the spin configuration explicitly. In other
words, we will assume that the presence of a domain wall
implies gapless excitations even for a finite system. On the
other hand, if the ground state is purely ferromagnetic, the
excitation energy will be nonzero and of order �. Figure 3
shows our results. As expected, the probability of domain-
wall formation grows upon increasing both ln L and � /�.
The surprising feature is that, when we define the x axis to be
x=ln L−A� �

� �2, all points collapse onto a single universal
curve. We find A=1.8, in good agreement with a previous
study which reported A=2.1�0.2 �Ref. 20� at the special
value P�g=0�=1 /2. The collapse onto a single curve enables
us to gain information about the slow transition to a disor-
dered ground state even for values of � /� for which the
relevant system sizes are far too large to be studied numeri-

cally. Most notably, not only does the typical size for observ-
ing a disordered ground state �i.e., the L for which P�g=0�
=0.5� scale as predicted in Ref. 13, the entire distribution
scales in precisely the same way. This is surprising because it
might have been expected that systems with particularly
weak randomness cross over to disordered ground states
more “slowly,” i.e., over a much broader range of ln L, in

FIG. 2. Typical ground-state configurations for different disor-
der strengths and system sizes. Top: L=30	30 and � /�=3. Bot-
tom: L=20	20 and � /�=0.95.
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FIG. 3. �Color online� Probability to find an energetically favor-
able domain wall in a finite system of linear size L. The values of
� /� range from 0.2 to 1 while the values of L are 20, 40, 80, 160,
and 320. Symbols represent different fixed system sizes with vary-
ing disorder strengths. For each choice of � /� and L, we averaged
over 3000 realizations of disorder. We find that A=1.8 provides the
best data collapse. The black line is the fit to an asymmetric sigmoid
�see text�.
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addition to reaching P�g=0�=0.5 at a larger length scale.
Note also that the gap probability is also not symmetric
about P�g=0�=0.5.

The crossover from a generically ordered �P�g=0�
0� to
disordered �P�g=0�
1� ground state occurs quite slowly,
over nearly two decades. The large range of L for which
samples are neither generically ordered nor disordered indi-
cates the possibility of large sample to sample fluctuations.
Some systems may have remnants of a Mott gap while others
are localized by disorder. In addition, the large L regime will
likely possess many low-lying energy states, each requiring
the reorganization of large number of electrons, implying
significant metastability and glassy dynamics, akin to experi-
ments on 2D low-mobility Si inversion layers,21–24 although
the interactions considered here are short-ranged. Such
glassy behavior has also been found theoretically in a similar
model of spinless fermions on a Bethe lattice.25 It is quite
remarkable that contrary to expectations the system behaves
more like an “Anderson insulator” despite strong interac-
tions.

B. Glassy dynamics

The signature of glassy quantum dynamics lies in the
long-time scale for relaxation to the ground state. We can, in
fact, learn something about the dynamics by interpreting Fig.
3. The distribution P�g=0� can be regarded as the cumula-
tive distribution function �cdf� to find an ordered domain of
characteristic size L or smaller since this distribution func-
tion reflects the existence of a domain wall up to the scale L.
The curve fits an asymmetric sigmoid f�x� of the form

f�x� =
1

�1 + e�x0−x�/�� , �3�

where x=ln�Le−A�� / ��2
�. The best fit to the data shown in Fig.

3 is =0.31, x0=1.37, and �=0.29. Taking a derivative to
find the L distribution, P�L�, results in P�L�
L−1/� for large
L. If we define the imaginary part of the frequency dependent
local susceptibility corresponding to the density ni�t�
�Heisenberg operator� to be �����, then

����� 
 � dL P�L���� − �0e−cL�
� . �4�

The � function signifies that at a frequency � the quantum
tunneling rate corresponding to that frequency is sampled by
a cluster of size L, where the exponent � requires micro-
scopic calculation and is left undetermined in the present
phenomenological analysis. The quantity �0 is the attempt
frequency in the many dimensional WKB theory. Thus, it is
easy to show that as �→0,

����� 

1

�

1

�ln
�0

�
	� . �5�

The exponent �=1+ �1 /�−1� /��1, as long as ��0; �=0
is highly unlikely because that would imply that the action
corresponding to the tunneling rate is independent of the size

of the cluster, L. It should be interesting to check experimen-
tally that the noise power spectrum does follow this 1 /� law
with a logarithmic correction, signifying glassy dynamics.

IV. ANALYTIC RESULTS IN ONE DIMENSION

It is instructive to consider the same model of spinless
fermions in one dimension10 where it is possible to compute
disorder averages of thermodynamic quantities analytically.
Recall that in 1D, the Imry-Ma argument gives that the or-
dered domains have characteristic size Lc
� �

� �2 so the
ground state is “disordered” and heterogeneous. To illustrate
the origin of glassy dynamics present even in 1D, we will
calculate both the disorder-averaged ground-state density �G
as well a quenched density �Q that would be obtained from
an infinitely fast temperature quench. This quenched state is
obtained through the sequential filling of the lowest available
energy levels up to the chemical potential �. We will be
interested in how the density profiles vary with � so we must
relax the condition of half filling. In addition, we will work
in the limit of large nearest-neighbor repulsion, �→�, so
that the particles must be separated by at least one empty-
lattice site. In other words, the fermions may be regarded as
hard-core dimers �see Fig. 4�. We emphasize that these
dimers should not be confused with valence bonds connect-
ing two neighboring sites, for which the word “dimer” is
frequently also used. The hard-core dimer constraint, along
with the random on-site energies, induces a geometrical frus-
tration between competing particle configurations. As a re-
sult, the ground-state density profile is a complex structure
that incorporates the preference for low energies while still
respecting the hard-core constraint.

A. Heuristic analysis of dimer frustration

Before calculating �G and �Q, we give a simple argument
to show that these two quantities differ by a finite amount for
all �G�0. In what follows, the on-site energies will be
drawn from a uniform �i.e., rectangular� distribution, denoted
by R���, between zero and one. The uniform distribution will

FIG. 4. �Color online� Schematic of a scenario where the
quenched configuration occupies site k, hence blocking sites k−1
and k+1, but the ground state foregoes occupancy of site k in favor
of the flanking sites if E1+E2�E. The upper �blue/dark gray� con-
figuration is the ground state and the lower �red/gray� is the
quenched.
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simplify the analytics and preserve the consistency of the
dimer �i.e., large �� limit. When �=0, all sites have positive
energy so the ground state is an empty lattice. When �=1,
all sites are attractive but the ground state has a complicated
structure due to the competing effects of the random on-site
energies and the hard-core constraint. Therefore, we will fo-
cus on � between zero and one. In the following argument,
we will absorb � into the on-site energies which will instead
be uniformly distributed between −� and 1−�.

Consider a finite lattice of L sites. Let the energy at site k
be E�0, and the energies at sites k−1 and k+1 be E1 and
E2, respectively. We calculate the probability Pswitch that, in
the ground state, placement of a particle at k is forfeited in
favor of the occupation of sites k−1 and k+1 despite site k
having the lowest energy. The scenario is depicted in Fig. 4.
This is the simplest way geometric frustration may cause the
ground and quenched states to differ because �G�k�=0 but
�Q�k�=1. Averaging over the value of E,

Pswitch = −

�
−�

0

P�E1 + E2 � E�dE

�
−�

0

dE

. �6�

Since sites k−1 and k+1 must also be attractive, P�E1+E2
�E�=�E

0dE1�E
0dE2�E− �E1+E2�� which equals E2 /2. Plug-

ging this into Eq. �6� then gives that Pswitch=�2 /6. Multiply-
ing Pswitch by the average number of sites with E�0, i.e.,
�L, gives the average number of these switches in a finite
system of size L. Setting this equal to unity gives the chemi-
cal potential at which we expect the first switch: �c
L−1/3.
Clearly, as L→�, �c→0. Also, since each such switch in-
creases the ground-state density relative to the quenched, we
also have that �=�G−�Q
�3 /6 for small � so �=0 only at
�=0. The above argument neglects the contributions of sites
k−2 and k+2 etc. but these effects are higher order in �, and
hence can be neglected for �
1. We will see this behavior
of � reproduced precisely from the exact result.

B. Exact solution for ground-state density

We now derive the disorder-averaged ground-state density
�G for a 1D lattice of dimers at chemical potential �, and
with on-site energies uniformly distributed between zero and
one. The analysis follows that of Fonk and Hilhorst26 who
considered the problem with a different energy distribution
not easily generalizable to a nonzero chemical potential. We
define Ek

1�Ek
0� to be the ground-state energy of the first k sites

subject to the constraint that a particle is present �absent� at
site k. These quantities can easily be seen to obey the recur-
sion relations,

Ek
1 = �k + Ek−1

0 , �7�

Ek
0 = min�Ek−1

0 ,Ek−1
1 � , �8�

where �k is the random energy at site k. Defining difference
variables �k=Ek

1−Ek
0 and subtracting the above equations

give a simple recursion relation for �k,

�k = �k + min�0,− �k−1� . �9�

By averaging over the on-site energy distribution R���,
the recursion relation is readily transformed into an integral
recursion relation for P���, the distribution function of �,

Pk��� = R����
−�

0

d��Pk−1���� + �
0

�

d��R�� + ���Pk−1���� .

�10�

The fixed-point distribution of P��� will contain the re-
quired information for bulk quantities so we can drop the
subscripts on P���. With R���=��+���1−�−��, we see
that P���=0 for ��1−� and hence also for ��−1. Then
there are three distinct regions to consider:

Region 1: −1���−�

P��� = �
−�−�

1−�

P����d��. �11�

Region 2: −����0

P��� = �
−1

0

P����d�� + �
0

1−�

P����d�� = 1. �12�

Region 3: 0���1−�

P��� = �
−1

0

P����d�� + �
0

1−�−�

P����d��. �13�

If we know the solution in region 3, we can integrate to
find the solution in region 1. Region 2 has a flat value of 1
�since P��� is a normalized probability distribution�. We con-
vert Eq. �13� to the differential equation

dP���
d�

= − P�1 − � − �� , �14�

which can be reduced to two coupled ordinary differential
equations by the replacement Q���= P�1−�−��. The result-
ing solution for P��� in region 3 is

P��� = cos � +

sin�1 − �

2
	 − cos�1 − �

2
	

sin�1 − �

2
	 + cos�1 − �

2
	 sin � . �15�

There is an undetermined multiplicative constant fixed by
requiring that P��� integrates to 1. From the form of the
equation in region 3, we see that this is equivalent to requir-
ing that P�1−��+�0

1−�P����d��=1. The necessary constant
turns out to be unity. One can then directly integrate to find
the solution in region 1:

P��� =

2 sin�1 + �

2
	sin� � + �

2
	 + cos� � + �

2
	�

sin�1 − �

2
	 + cos�1 − �

2
	 . �16�

Equations �15� and �16�, along with P���=1 in region 2,
comprise the required solution of the integral equation. We
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now use the derived form of P��� to solve for the disorder-
averaged ground-state density. This can be found, again fol-
lowing Ref. 26, by defining E0�E1� to be the minimum en-
ergy of the entire system �not just the left half�, subject to the
constraint that a particle is absent �present� at some site k
deep in the bulk. The average density will be given by 1
− P�E0�E1�. A similar recursive calculation, this time in-
cluding sites to the left and right, leads to

P�E0 � E1� = �
−1

1−�

d�1P��1��
−1

1−�

d�2P��2�

	�
−�

1−�

d��− � − min�0,− �1� − min�0,− �2�� .

�17�

The theta function can be split up into four cases

�
−�

1−�

d��− � − min�0,− �1� − min�0,− �2�� = ���1��− �2�

+ �− �1���2����1 + �� + ��1���2�min�1,�1 + �2 + ��

+ �− �1��− �2�� , �18�

and each term integrated with the form of P��� derived
above. After some lengthy but straightforward algebra, and
using �G=1− P�E0�E1�, we find the remarkably simple re-
sult

�G =
1

1 + csc �
. �19�

It is important to remember that this result is valid in the
regime 0���1. Other quantities such as the average en-
ergy per site can be calculated from P���, should they be of
interest.

C. Quenched state density

We now turn to the calculation of the quenched state den-
sity. To do this, we will use the formalism of random sequen-
tial adsorption �RSA�.27 In particular, we will use the dy-
namic formulation of RSA with a random distribution of
binary adsorption rates28 in the determination of the
quenched density. The reason is that, since the random ener-
gies on distinct sites are uncorrelated, the process of sequen-
tially filling the deepest energy minima is identical to an
RSA process.26 However, with ��1, some sites are repul-
sive and hence have an “on rate” of zero. Therefore, we need
to consider an RSA process with two adsorption rates, � and
�, take the limit �→0 �while � remains arbitrary�, and look
for the t→� density.

The adsorption rate of site n will be denoted by �n and the
probability that site n is occupied by a particle at time t is
�n�t�. This probability should be thought of as an average
over different realizations of the adsorption process for a
fixed choice of the �n. Using established formalism,28 �n
varies in time as

d�n�t�
dt

= �n exp�− �nt�Qn+1
− Qn−1

+ , �20�

where the Q’s are time-dependent and obey

dQn
−

dt
= − �n exp�− �nt�Qn+1

− , �21�

with a similar equation for Qn
+ except with the replacement

n+1→n−1. Since, in our calculation of the ground-state
density, we have chosen the on-site energies to be uniformly
distributed between zero and one, the chemical potential �
gives the fraction of attractive sites that therefore have ad-
sorption rate ��0. Thus we choose the �n’s to be random
variables equal to � with probability � and equal to zero
with probability 1−�. The rest of the sites are repulsive and
hence have an adsorption rate of zero. The sequential filling
of lowest energy minima will then be mimicked by the dy-
namic RSA process.

To find the average density of the quenched configuration,
�Q, we need to average over the �n’s and take the t→� limit.
Since Qn+1

− only depends on sites m�n+1 �and Qn−1
+ only on

m�n−1�, the average over �n, denoted by �.�, simply
factorizes:28

d��Q�t��
dt

= � exp�− �t��Q�2, �22�

d�Q�
dt

= − �� exp�− �t��Q� , �23�

where we have used ��n exp�−�nt��=�� exp�−�t� and the
fact that the Q’s become independent of position after aver-
aging, due to translational invariance. Clearly, we then have
�Q�=exp���e−�t−1�� and upon integration of Eq. �22� for t
→�, we find that the quenched density is given by

�Q =
1

2
�1 − e−2�� , �24�

where �Q rises linearly from zero at �=0 and saturates at
�=1 to the “jamming” density of dimers �0.432.

D. Discussion

The two densities �Eqs. �19� and �24�� are plotted in Fig.
5, and their difference � is plotted below. �Q provides a
lower limit for �G and both rise linearly from zero for small
values of �. For larger �, �Q peels off due to the jamming
caused by irreversible adsorption. When we expand �=�G
−�Q for small �, the first nonzero term is �3 /6, identical to
what was predicted earlier in our heuristic argument. We also
plot � vs �G in Fig. 5 to show that � remains quite small until
the lattice reaches quarter filling ��G=0.25�.

The picture that emerges from our exact solution leads to
a few general conclusions. First, the quenched and ground
states of hard-core particles in disordered landscapes always
differ in an extensive fashion except at �G=0. As � is in-
creased, the ground state evolves through local rearrange-
ments describable as “micro” first-order transitions.29 De-
spite this, there are two qualitatively different regimes where
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� can be either large or small. In the small � regime, the
ground state is kinetically accessible, whereas the large �
regime is characterized by ubiquitous metastability. If the
system becomes stuck in one of these metastable configura-
tions, the geometric frustration will cause anomalously slow
evolution toward the ground state. From Fig. 5, it is clear

that the symptoms of glassy dynamics become more pro-
nounced once the system reaches quarter filling.

V. CONCLUSION

Having established the main points of the paper, it is use-
ful to make a few educated guesses that should be of interest
to future work. We reiterate that, as long as the disorder
remains finite, it is unlikely that the system will reach a true
metallic state. If the picture described here is generic �ignor-
ing long-range Coulomb interaction�, there would not be a
true metal-insulator transition in 2D. However, there should
be a crossover scale below which the system will appear to
have an insulating Mott gap. In contrast, the corresponding
three-dimensional case could exhibit a genuine quantum
phase transition because the Imry-Ma argument leaves open
the possibility of a broken-symmetry state signifying a Mott
insulator, and the argument for the proliferation of low en-
ergy excitations in D�2 cannot apply. There are many sys-
tems where patchy gapped states or a filled Mott gap appear
to be important as in underdoped high-temperature supercon-
ductors or frustrated magnets. It should be interesting to ex-
amine the role of disorder from the present perspective.
Since we have provided a relatively complete characteriza-
tion of the 1D model in the strong-interaction limit, it would
also be interesting to perform a density matrix renormaliza-
tion group simulation where one can explicitly tune the in-
teraction strength.
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